uni:8:kdd1:start
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
uni:8:kdd1:start [2015-04-14 10:48] – [Arten] skrupellos | uni:8:kdd1:start [2020-11-18 18:11] (current) – external edit 127.0.0.1 | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== Knowledge Discovery in Databases I ====== | ====== Knowledge Discovery in Databases I ====== | ||
+ | ===== Übung 1 ===== | ||
+ | ==== Aufgabe 1 ==== | ||
+ | * a) Klassifikation (erst des Bildes: Suchen nach Nummernschild. Dann von Buchstaben) & supervised (Man weiß, wie Nummernschilder aussehen) | ||
+ | * b) Klassifikation & supervised (Es sind bereits klassifizierte Daten gegeben) | ||
+ | * c) Outlier Detection & unsupervised | ||
+ | * d) Clustering, evtl. Regression, Assoziation & unsupervised | ||
+ | * e) Assoziation & unsupervised | ||
+ | * f) Clustering, Assoziation & unsupervised | ||
+ | * g) Kein Datamining | ||
+ | * h) Kein Datamining | ||
+ | * i) i) Regression & supervised | ||
+ | * i) ii) Klassifikation & supervised | ||
+ | * i) iii) Regression, unsupervised | ||
+ | |||
+ | ===== Übung 8 ===== | ||
+ | ==== Aufgabe 1 ==== | ||
+ | ^ Start ^ 2d. ^ 4d. ^ | ||
+ | | A | 1 | 6 | | ||
+ | | B | 1 | 5 | | 4/(6+5+4+5) | | ||
+ | | C | 1 | 5 | | ||
+ | | D | 1 | 4 | 2/(1+1) | 4/(6+5+5+5) | | ||
+ | | E | 4 | 5 | 2/(4+4) | 5/ | ||
+ | | F | 2 | 3 | | ||
+ | | G | 1 | 2 | | ||
+ | | H | 1 | 2 | | ||
+ | | I | 2 | 3 | | ||
+ | | J | 2 | 2 | | ||
+ | | K | 3 | 4 | | ||
+ | | L | 4 | 5 | | ||
+ | | M | 2 | 2 | | ||
+ | | N | 1 | 2 | | ||
+ | | O | 1 | 1 | | ||
+ | | P | 1 | 2 | | ||
+ | | Q | 1 | 2 | | ||
+ | | R | 1 | 1 | | ||
+ | | S | 1 | 2 | | ||
+ | | T | 2 | 2 | | ||
+ | |||
+ | v) | ||
+ | Aggregierte 4. Distanz für T: 2+2+1+2=7 (die nachsten Nachbarn sind O, Q, R, S) | ||
+ | |||
+ | i) k=2. E | ||
+ | $$LOF_2(E) = \frac{1}{2NN(E)} \cdot \sum_{o \in 2NN(E)} \frac{lrd_2(o)}{lrd_2(E)} = \frac{1}{2} \cdot \left( \frac{lrd_2(D)+lrd_2(F)}{lrd_2(E)}\right) = \frac{\frac{2}{2} + \frac{2}{3}}{2 \cdot \frac{2}{8}} = 3.333$$ | ||
+ | |||
+ | $$lrd_2(E) = \frac{\left| 2NN(E) \right| }{\sum_{o \in 2NN(E)} \text{reach-dist}_2(E, | ||
+ | |||
+ | $$rdist_2(E, | ||
+ | |||
+ | $$lrd_2(D) = \frac{2}{rdist_2(D, | ||
+ | |||
+ | i) k=4. E | ||
+ | $$ LOF_4(E) = \frac{1}{\left| 4NN(E) \right|}\sum_{o \in 4NN(E)} \frac{lrd_4(o)}{lrd_4(E)} = \frac{\frac{1}{5} \left(\frac{4}{20}+\frac{4}{20}+\frac{4}{21}+\frac{4}{10}+\frac{4}{10}}}{\frac{5}{23} = 1,279$$ | ||
+ | |||
+ | |||
+ | ===== Übung 10 ===== | ||
+ | ==== Aufgabe 1 ==== | ||
+ | * $K_i$: Klassifikator | ||
+ | * $C_i$: Anzahl richtig | ||
+ | |||
+ | ^ $K_i \rightarrow$ \\ $C_i$ ^ A ^ B ^ C ^ ^ | ||
+ | ^ A | 4 | 0 | 1 ^ 5 ^ | ||
+ | ^ B | 2 | 2 | 1 ^ 5 ^ | ||
+ | ^ C | 1 | 1 | 3 ^ 5 ^ | ||
+ | ^ ^ 7 ^ 3 ^ 5 ^ ^ | ||
+ | |||
+ | |||
+ | * Precission: $\frac{|TP|}{|TP| + |FP|}$ | ||
+ | * Recall: ?? | ||
+ | |||
+ | ^ ^ $|TP|$ ^ $|FP|$ ^ $|FN|$ ^ | ||
+ | | A | 4 | 3 | 1 | | ||
+ | | B | 2 | 1 | 3 | | ||
+ | | C | 3 | | | | ||
+ | |||
+ | * $|TP|$: Diagonale | ||
+ | * Zeile? | ||
+ | * Spalte? | ||
+ | |||
+ | ^ x ^ Precision(K, | ||
+ | | A | $\frac{4}{7}$ | $\frac{4}{5}$ | $\frac{2}{3}$ | | ||
+ | | B | $\frac{2}{3}$ | $\frac{2}{5}$ | $\frac{1}{2}$ | | ||
+ | | C | $\frac{3}{5}$ | $\frac{3}{5}$ | $\frac{3}{5}$ | | ||
+ | |||
+ | * Mittlere Precision: $\frac{1}{3}\left(\frac{4}{7} + \frac{2}{3} + \frac{3}{5}\right) = 0.6$ | ||
+ | ==== Aufgabe 2 ==== | ||
+ | === Leave-one-out === | ||
+ | Jeweils eins raus nehmen und es durch die dann vorherschende Mehrheit ersetzen | ||
+ | |||
+ | * < | ||
+ | * A < | ||
+ | * A A < | ||
+ | * A A A < | ||
+ | * A A A B < | ||
+ | * A A A B B < | ||
+ | |||
+ | => Fehlerrate 100% | ||
+ | |||
+ | === optimaler Klassifikator === | ||
+ | ???? | ||
+ | |||
+ | A A A B B B + ? | ||
+ | |||
+ | Fehlerrate 50% | ||
+ | |||
+ | === Bootstrap === | ||
+ | Zufälliges ziehen mit zurücklegen | ||
+ | |||
+ | $1, 2, \ldots, n$ | ||
+ | |||
+ | $P(x) = \frac{1}{n} \Rightleftarrow P(\neg x) = 1 - \frac{1}{n}$ | ||
+ | |||
+ | $P_n(\neg x) = \left(1 - \frac{1}{n}\right)^n = e^{-1} = 0.368$ | ||
+ | |||
+ | Fehlerrate = 0.632 * Fehlerrate_Test + 0.368 * Fehlerrate_Training | ||
+ | |||
+ | === 10 Fach Kreuzvalidierung === | ||
+ | |||
+ | <WRAP center round box 60%> | ||
+ | **Beispiel 3 fach Kreuzvalidierung** | ||
+ | |||
+ | Datensatz 3x unterschiedlich aufteilen: | ||
+ | |||
+ | | Training | Training | Test | | ||
+ | |||
+ | | Training | Test | Training | | ||
+ | |||
+ | | Test | Training | Training | | ||
+ | </ | ||
+ | |||
+ | === Aufgabe 3 === | ||
+ | A priori- und bedingte Wahrscheinlichktein: | ||
+ | * $P(Ski) = \frac{1}{2}$ | ||
+ | * $P(\neg Ski) = \frac{1}{2}$ | ||
+ | |||
+ | Klasse Wetter = W | ||
+ | * $P(W = Sonne \mid Ski) = \frac{1}{4}$ | ||
+ | * $P(W = Schnee \mid Ski) = \frac{2}{4}$ | ||
+ | * $P(W = Regen \mid Ski) = \frac{1}{4}$ | ||
+ | * $P(W = Sonne \mid \neg Ski) = \frac{1}{4}$ | ||
+ | * $P(W = Schnee \mid \neg Ski) = \frac{1}{4}$ | ||
+ | * $P(W = Regen \mid \neg Ski) = \frac{2}{4}$ | ||
+ | |||
+ | Klasse Schnee = S | ||
+ | * $P(S < 50 \mid Ski) = \frac{1}{4}$ | ||
+ | * $P(S >= 50 \mid Ski) = \frac{3}{4}$ | ||
+ | * $P(S < 50 \mid \neg Ski) = \frac{3}{4}$ | ||
+ | * $P(S >= 50 \mid \neg Ski) = \frac{1}{4}$ | ||
+ | |||
+ | |||
+ | === a) === | ||
+ | * $W = \text{Sonne}, | ||
+ | * $P(\text{Ski} \mid W=\text{Sonne} \wedge S >= 50) = \frac{P(W=\text{Sonne}, | ||
+ | * $P(\neg Ski \mid Sonne, >= 50) = \frac{\nicefrac{1}{4} \cdot \nicefrac{1}{4} \cdot \nicefrac{1}{2}}{P(Sonne, | ||
+ | * => $P(Ski | \ldots) = \frac{3}{4}$ | ||
+ | |||
+ | ^ ^ a priori ^ Wetter ^^^ Schnee ^^ | ||
+ | ^ ::: ^ ::: ^ Sonne ^ Schnee ^ Regen ^ >= 50 ^ < 50 ^ | ||
+ | | Ski | 1/2 | 1/4 | 2/4 | 2/4 | 1/4 | 3/4 | 1/4 | | ||
+ | | \neg Ski | 1/2 | 1/4 | 1/4 | 2/4 | 1/4 | 3/4 | | ||
+ | |||
+ | ==== Aufgabe 4 ==== | ||
+ | - Klassifikation (Die Klassen (Spam/Ham) stehen schon vorher fest) | ||
+ | - Clustering | ||
+ | - Clustering (Assoziationsregel / Wahrenkorbanalyse) | ||
+ | - Clustering | ||
+ | - Klassifikation | ||
+ | - Clustering | ||
+ | - Klassifikation | ||
+ | |||
+ | ===== Übung 11 ===== | ||
+ | ==== Aufgabe 1 ==== | ||
+ | Wird immer als Kreis Klassifiziert | ||
+ | |||
+ | ==== Aufgabe 2 ==== | ||
+ | XOR-Problem | ||
+ | |||
+ | ==== Aufgabe 3 ==== | ||
+ | $Entropie(T) = - \sum^k_{i=1}p_i \cdot log(p_i)$ | ||
+ | |||
+ | $Informationsgewinn(T, | ||
+ | |||
+ | * Erster Teil von Informationsgewinn: | ||
+ | * Zweiter Teil von Informationsgewinn: | ||
+ | |||
+ | Mittlere Entropie: Gewicht nach '' | ||
+ | |||
+ | === a) === | ||
+ | <WRAP center round important 60%> | ||
+ | Hier wird der 2-er Logarithmus verwendet. Es kann aber jeder verwendet werden, solange es überall verwendet wird. | ||
+ | </ | ||
+ | |||
+ | == 1 Split == | ||
+ | T ist noch die ganze DB | ||
+ | |||
+ | $\text{Entropie}(T) = -(p_{\text{niedrig}} \cdot log_2(p_\text{niedrig}) + p_\text{hoch} \cdot log_2(p_\text{hoch}) = -\frac{1}{2}\cdot(-1)-\frac{1}{2}\cdot(-1) = 1$ | ||
+ | |||
+ | ** Zeit seit Fahrprüfung** | ||
+ | ^ $T_i$ ^ Anzahl ^ $P_\text{niedrig}$ ^ $P_\text{hoch}$ ^ Entropie(T) ^ | ||
+ | | 1-2 | 3 | 1/3 | 2/3 | $-\frac{1}{3}\log\frac{1}{3}-\frac{2}{3}\log{2}{3} = 0.918$ | | ||
+ | | 2-7 | 3 | 2/3 | 1/3 | $-\frac{2}{3}\log\frac{2}{3}-\frac{1}{3}\log{1}{3} = 0.918$ | | ||
+ | | >7 | ||
+ | |||
+ | Informationsgewinn(T_i, | ||
+ | |||
+ | **Geschlecht** | ||
+ | ^ $T_i$ ^ Anzahl ^ $P_\text{niedrig}$ ^ $P_\text{hoch}$ ^ Entropie(T) ^ | ||
+ | | m | 5 | 2/5 | 3/5 | $-\frac{2}{5}\log\frac{2}{5}-\frac{3}{5}\log{3}{5} = 0.971$ | | ||
+ | | w | 3 | 2/3 | 1/3 | $-\frac{2}{3}\log\frac{2}{3}-\frac{1}{3}\log{1}{3} = 0.918$ | | ||
+ | |||
+ | Informationsgewinn(T_i, | ||
+ | |||
+ | **Wohnort** | ||
+ | ^ $T_i$ ^ Anzahl ^ $P_\text{niedrig}$ ^ $P_\text{hoch}$ ^ Entropie(T) ^ | ||
+ | | Stadt | 3 | 3/3 | 0/3 | $-1\log1-0\log0 = -1\cdot0-0=0$ | | ||
+ | | Land | 5 | 1/5 | 4/5 | $-\frac{1}{5}\log\frac{1}{5}-\frac{4}{5}\log{4}{5} = 0.722$ | | ||
+ | |||
+ | Informationsgewinn(T_i, | ||
+ | |||
+ | == 2. Split == | ||
+ | T={2, | ||
+ | |||
+ | $\text{Entropie}(T) = -(p_{\text{niedrig}} \cdot log_2(p_\text{niedrig}) + p_\text{hoch} \cdot log_2(p_\text{hoch}) = -\frac{1}{5}\cdot\log\frac{1}{5}-\frac{4}{5}\cdot(\frac{4}{5}) = 0.722$ | ||
+ | |||
+ | ** Zeit seit Fahrprüfung** | ||
+ | ^ $T_i$ ^ Anzahl ^ $P_\text{niedrig}$ ^ $P_\text{hoch}$ ^ Entropie(T) ^ | ||
+ | | 1-2 | 2 | | ||
+ | | 2-7 | 1 | | ||
+ | | >7 | ||
+ | |||
+ | Informationsgewinn(T_i, | ||
+ | |||
+ | **Geschlecht** | ||
+ | ^ $T_i$ ^ Anzahl ^ $P_\text{niedrig}$ ^ $P_\text{hoch}$ ^ Entropie(T) ^ | ||
+ | | m | 3 | | ||
+ | | w | 2 | 1/2 | 1/2 | $1$ | | ||
+ | |||
+ | Informationsgewinn(T_i, | ||
+ | |||
+ | == Beispiel Gini == | ||
+ | ^ T_i ^ Anzahl ^ P_niedrig ^ P_hoch ^ gini(T_i) ^ | ||
+ | | m | 5 | 2/5 | 3/5 | $1-((2/ | ||
+ | | w | 3 | 2/3 | 1/3 | $1-((2/ | ||
+ | |||
+ | gini geschlecht(T) = 5/8 * 0.48 + 3/8 * 0.44 | ||
+ | === b) === | ||
+ | ... | ||
+ | |||
+ | |||
===== Foo ===== | ===== Foo ===== | ||
* **Datenbank** | * **Datenbank** | ||
Line 24: | Line 272: | ||
* **Wissen** | * **Wissen** | ||
+ | |||
+ | [[Preprocessing]] | ||
===== Arten ===== | ===== Arten ===== | ||
* Supervised | * Supervised |
uni/8/kdd1/start.1429001301.txt.gz · Last modified: (external edit)