Wiki

A universe of ideas

User Tools

Site Tools


uni:8:ml:start

Maschinelles Lernen und Data Mining

Reinforcement Learning

Agent → Actions → Environment
← state ←
← reward ←
  1. Learner is not told what to do
  2. Trial and error search
  3. Delayed reward
  4. We need to explore round exploit
  • Policy what to do
  • Reward what is good
  • Value what is good because it predicts reward
  • Model what follows what

Evaluating feedback

  • Evaluating actions vs. inst???
  • Example: n-armed bandit
    • evaluate feedback
  • after each play $a_t$ we got a reward r_t where $ E\{r_t \mid a_t \} = Q^*(a_t)$
  • optimize reward ??? 1000 plays
  • Exploration/
    • ??? $Q_t(a) = Q^*(a)$ action value estimate
    • ???
  • $a_t = a_t^*$ ⇒ exploitation
  • $a_t \ne a_t^*$ ⇒ exploration
Action Value Methods

Suppose by the ??? play actions $a$ had been choosen $k_a$ times, producing rewards $r_1, r_2, \dots r_{k,a}$ $$Q_t(a) = \frac{r_1, r_2, \dots r_{k,a}}{k_a}$$ $$\lim_{k \rightarrow \infty} Q_t(a) = Q^*(a)$$

\epsilon-feeding action selection
  • feeding: $a_t = a_t^* = avg_a max Q_t(a)$
  • $\epsilon$-feeding = $a_t^*$????
In the 10-Armed test bed
  • $n=10$ possible actions
  • Each Q^*(a) is chosen rounding from N(0,1)
  • 1000 plays, avergage our 2000 experiments
Softmax action selection
  • Softmax grade action probabilities by estimated values $Q_t$
  • Bolzmann-distribution: $$\pi(a_t) = \frac{e^{Q_t(a)/\tau}}{\sum^n_{b=1} e^{Q_t(b)/\tau}}$$

Something else

$$ Q_k = \frac{r_1, r_2, \ldots, r_k}{k}$$

Incremental implementation

$$Q_{k+1} = Q_k+\frac{1}{k+1}\[r_{k+1} - Q_k\]$$ Common form: NewEstimate == OldEstimate + StepSize[Target - OldEstimate] ==== Agent-Estimation??? ==== Learn a policy: Policy at step t, $\pi_t$ is a mapping from states to action probabilities $\pi_t(s,a)$=probability that $a_k=a$ when $S_k = S$

Return: $$r_{t+1}, r_{t+2}, \ldots$$

We want to maximize the expected reward, $E\{R_t\}$ for each t

$$R_t = r_{t+1} + r_{t+2} + \ldots + r_T$$

Discounted reward $$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots = \sum_{k=0}^\infty \gamma^k r_{t+k+1} \text{where} 0 \le \gamma \le 1$$

$$\text{shortsited} 0 \leftarrow \gamma \rightarrow 1 \text{farsited}$$

Markov Property

$$Pr\{s_{t+1} = s', r_{t+1} = r \mid s_t, a_t, r_t, s_{t-1}, a_{t-1}, r_{t-1}, \ldots s_0, a_0, r_0 \} = Pr \{s_{t+1} = s', r_{t+1} = 1 \mid s_t, a_t \}

uni/8/ml/start.txt · Last modified: 2020-11-18 18:11 by 127.0.0.1