Wiki

A universe of ideas

User Tools

Site Tools


uni:8:ml:start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
uni:8:ml:start [2015-04-14 10:01] – created skrupellosuni:8:ml:start [2020-11-18 18:11] (current) – external edit 127.0.0.1
Line 1: Line 1:
 ====== Maschinelles Lernen und Data Mining ====== ====== Maschinelles Lernen und Data Mining ======
 +===== Reinforcement Learning =====
 +^  Agent  |  -> Actions ->  ^  Environment  |
 +^ :::      <- state <-    ^ ::: |
 +^ :::      <- reward <-   ^ ::: |
 +
 +  - Learner is not told what to do
 +  - Trial and error search
 +  - Delayed reward
 +  - We need to explore round exploit
 +
 +  * **Policy** what to do
 +  * **Reward** what is good
 +  * **Value** what is good because it predicts reward
 +  * **Model** what follows what
 +
 +==== Evaluating feedback ====
 +  * Evaluating actions vs. inst???
 +  * Example: n-armed bandit
 +    * 
 +    * evaluate feedback
 +  * after each play $a_t$ we got a reward r_t where $ E\{r_t \mid a_t \} = Q^*(a_t)$
 +  * optimize reward ??? 1000 plays
 +  * Exploration/
 +    * ??? $Q_t(a) = Q^*(a)$ action value estimate
 +    * ???
 +  * $a_t = a_t^*$ => exploitation
 +  * $a_t \ne a_t^*$ => exploration
 +== Action Value Methods ==
 +Suppose by the ??? play actions $a$ had been choosen $k_a$ times, producing rewards $r_1, r_2, \dots r_{k,a}$
 +$$Q_t(a) = \frac{r_1, r_2, \dots r_{k,a}}{k_a}$$
 +$$\lim_{k \rightarrow \infty} Q_t(a) = Q^*(a)$$
 +
 +== \epsilon-feeding action selection ==
 +  * feeding: $a_t = a_t^* = avg_a max Q_t(a)$
 +  * $\epsilon$-feeding = $a_t^*$????
 +== In the 10-Armed test bed ==
 +  * $n=10$ possible actions
 +  * Each Q^*(a) is chosen rounding from N(0,1)
 +  * 1000 plays, avergage our 2000 experiments
 +
 +== Softmax action selection ==
 +  * Softmax grade action probabilities by estimated values $Q_t$
 +  * Bolzmann-distribution: $$\pi(a_t) = \frac{e^{Q_t(a)/\tau}}{\sum^n_{b=1} e^{Q_t(b)/\tau}}$$
 +
 +===== Something else =====
 +$$ Q_k = \frac{r_1, r_2, \ldots, r_k}{k}$$
 +
 +==== Incremental implementation ====
 +$$Q_{k+1} = Q_k+\frac{1}{k+1}\[r_{k+1} - Q_k\]$$
 +
 +Common form: NewEstimate == OldEstimate + StepSize[Target - OldEstimate]
 +
 +==== Agent-Estimation??? ====
 +Learn a policy:
 +Policy at step t, $\pi_t$ is a mapping from states to action probabilities $\pi_t(s,a)$=probability that $a_k=a$ when $S_k = S$
 +
 +Return:
 +$$r_{t+1}, r_{t+2},  \ldots$$
 +
 +We want to maximize the expected reward, $E\{R_t\}$ for each t
 +
 +$$R_t = r_{t+1} + r_{t+2} +  \ldots + r_T$$
 +
 +Discounted reward
 +$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots = \sum_{k=0}^\infty \gamma^k r_{t+k+1} \text{where} 0 \le \gamma \le 1$$
 +
 +$$\text{shortsited} 0 \leftarrow \gamma \rightarrow 1 \text{farsited}$$
 +
 +==== Markov Property ====
 +$$Pr\{s_{t+1} = s', r_{t+1} = r \mid s_t, a_t, r_t, s_{t-1}, a_{t-1}, r_{t-1}, \ldots s_0, a_0, r_0 \} = Pr \{s_{t+1} = s', r_{t+1} = 1 \mid s_t, a_t \}
uni/8/ml/start.1428998473.txt.gz · Last modified: 2020-11-18 18:10 (external edit)